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ABSTRACT

In this study, a machine learning algorithm for generating a gridded

CONUS-wide probabilistic road-temperature forecast is presented. A ran-

dom forest is used to tie a combination of HRRR model surface variables

and information about the geographic location and time of day/year to ob-

served road temperatures. This approach differs from its predecessors in that

road temperature is not deterministic (i.e., provides a forecast of a specific

road temperature), but rather it is probabilistic, providing a 0-100% probabil-

ity that the road temperature is subfreezing. This approach can account for

the varying controls on road temperature that are not easily known or able

to be accounted for in physical models, such as amount of traffic, road com-

position, and differential shading by surrounding buildings and terrain. The

algorithm is trained using road temperature observations from one winter sea-

son (Oct-Mar 2016-17) and calibrated/evaluated using observations from the

following winter season (Oct-Mar 2017-18). Case-study analyses show the

algorithm performs well for various scenarios and captures the temporal and

spatial evolution of the probability of subfreezing roads reliably. Statistical

evaluation for the predicted probabilities shows good skill as the mean area

under the receiver operating characteristics curve is 0.96 and the Brier Skill

Score is 0.66 for a 2-hr forecast and only degrades slightly as lead time is

increased. Additionally, the algorithm produces well-calibrated probabilities,

and consistent discrimination between clearly above-freezing and subfreezing

environments.
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1. Introduction34

On average, adverse road weather causes 5897 fatalities per year, making this the leading cause35

of weather-related fatalities in the United States (Pisano et al. 2018; Walker et al. 2018). Among36

the primary road hazards are slippery conditions associated with accumulating snow/ice, which37

only occur when the road temperature (TR) is either subfreezing, TR is less than the freezing point38

of de-icing chemicals that may have been applied, or if the rate of accumulating precipitation39

exceeds the rate of melting at the surface. This makes knowledge of TR an important first step in40

anticipating whether icy/snowy roads may constitute a human health and safety threat.41

The first instinct for estimating TR may be to use numerical weather prediction (NWP) analyses42

and forecasts of soil temperature. However, soil temperature in a model will be dictated by the43

dominant land-use category in each grid box. Over most of the CONUS, this is some form of veg-44

etation. But even in urban areas, where the land-surface model parameterizes processes typical of45

various impervious surfaces, soil-temperature forecasts may not reflect actual road temperatures.46

Recent work demonstrates this is true, showing that HRRR soil-temperatures typically underesti-47

mate the actual road temperature between 1-7◦C, but differences as great as 14◦C have been noted48

(Downing et al. 2020).49

Several physical road models which predict TR have been developed. The most well-known50

road-weather model in the United States is the Model of the Environment and Temperature of51

Roads (METRo; Crevier and Delage 2001). METRo is a physically-based approach for providing52

deterministic predictions of TR developed by Environment Canada. It works in a similar manner53

to land-surface models in that the energy balance at the road/atmosphere interface is explicitly54

computed. It accounts for the various forcings that affect TR, including the heat diffusivity and55

conductivity unique to the road composition, insolation, longwave radiation, and precipitation.56
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METRo has been adapted for experimental use within the NWS and evaluated by Rutz and Gib-57

son (2013). Using RWIS observations from western Montana and northern Idaho, they show that58

for TR ranging from ±5◦C, METRo has mean errors ranging from −2.5 to 0.5◦C suggesting it59

has a slight cold bias. Several other physical road models have been developed with similar per-60

formance statistics (e.g., Rayer 1987; Jacobs and Raatz 1996; Shao and Lister 1996; Sass 1997;61

Bouilloud et al. 2009; Yang et al. 2012; Fujimoto et al. 2012; Kangas et al. 2015). A range of62

statistical techniques for predicting TR have also been attempted with varying degrees of success63

and applicability (e.g., Hertl and Schaffar 1998; Shao 1998; Juga et al. 2013; Toms et al. 2017).64

The primary limitation of the the METRo model, or its counterparts, for CONUS-wide imple-65

mentation is the need for in-pavement TR observations to initialize the forecast. As will be shown,66

platforms providing in-pavement observations are not evenly distributed across the CONUS, with67

some states having no observations at all. Therefore, an algorithm independent of those observa-68

tions which produces gridded CONUS-wide nowcasts and forecasts of the probability that TR is69

subfreezing is presented.70

This paper is organized as follows: Section 2 describes existing technology for measuring TR and71

the justification for a probabilistic approach. Section 3 discusses the use of machine learning along72

with the data and methods used in this study. Section 4 highlights algorithm output along with73

comparisons to available observations through case-study analyses. Section 5 provides statistical74

results for nowcast and forecasting algorithms, and lastly Section 6 concludes with a summary and75

discussion.76

2. Measurements and limitations of observed TR77

TR is directly measured in some states via the Road Weather Information System (RWIS) net-78

work at a temporal resolution of 5 minutes. RWIS sites typically have sensors embedded flush79

4
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with the roadway surface with each sensor installed in the innermost wheel well of a lane on the80

roadway (Boselly 1993). These are the sensors for which TR is defined in this study. Sensors can81

also be installed up to depths of 2-m underground (thus providing subsurface temperature data),82

an example being North Dakota RWIS sites, but these supplemental observations are not used in83

this study due to their limited deployment. The installation of RWIS sensors is at the discretion of84

individual state Departments of Transportation (DOTs) and, hence, they are not evenly distributed85

across the CONUS (Fig 1a). Note that there is very poor to no coverage in most southern-tier86

states. Even in those states that do have RWIS sites, the spatial distribution is nonuniform, with87

more urbanized areas/heavily-trafficked roads being better monitored than secondary or tertiary88

roadways. The most egregious example of a nonuniform distribution is Missouri, wherein sensors89

are only deployed along Interstates 70 and 44.90

In those states with a sufficiently uniform distribution of RWIS sites, it is possible to perform91

an objective analysis of the TR observations to create a gridded analysis, but the spatial represen-92

tativeness of the observations is questionable. A typical distribution of TR in the wake of a winter93

storm is provided over northern Ohio at 1100 UTC 14 November 2018 (Fig. 1b). TR observations94

range from −5◦C to 5◦C across the region shown and from −4◦C to 2◦C in just the Cleveland95

metropolitan area. A high degree of spatial variability, such as in Fig. 1b, occurs frequently. This96

is demonstrated through comparison of TR observations for RWIS sites that are within 5 km of97

each other during the winter months (Oct-Mar) of the 2016−17 and 2017−18 winter seasons.98

Only those sites indicated as red in Fig. 1a are used for this evaluation. This assessment includes99

600,606 pairings. For those RWIS sites with multiple sensors (i.e., a sensor for each lane of traffic),100

the minimum TR is chosen for the analysis. While the median absolute difference in TR is 1.44◦C,101

the absolute difference in TR exceeds 3◦C for 22.16% of the pairs. Another 11% of pairs have one102

site with an above-freezing TR while the neighboring site is subfreezing. This variability indicates103
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there can be critically-important subgrid-scale variability that most high-resolution, deterministic,104

objective analyses and NWP analyses will not be able to capture.105

Since RWIS sites can be equipped with separate thermometers for each lane of traffic, it is106

also possible to quantify the intersite variability, an example of which is provided at the OH112107

RWIS site for 14 November 2018 (see Fig. 1b for location). One sensor has above-freezing TR108

observations throughout the day, while the other has subfreezing TR from 0500 to 1500 UTC (Fig.109

1c). The difference in TR between the two thermometers ranges from 1 to 6◦C over the course110

of the day. Expanding this variability experiment to the same TR observations used above shows111

that the median absolute difference in TR between any two lanes is 1◦C while the 75th percentile112

difference is 2◦C. Hence, temperature differences of 2◦C or more between any two lanes at a single113

RWIS site is not uncommon and can happen 25% of the time. This opens up the possibility of one114

lane being subfreezing while an adjacent lane is above freezing for the same RWIS installation.115

An assessment of the frequency with which one lane has above-freezing TR while a neighboring116

lane has subfreezing TR is performed using the same dataset but only including those installations117

where all sensors indicated TR within +/-5◦C. This assessment includes 578,173 observation pairs.118

Individual sensors from a single installation disagree on whether TR is subfreezing 14% of the time.119

These single-site and state-wide variations in TR are not unexpected. Differing amounts of traffic,120

differential shading from nearby vegetation/construction, and even road preparation activities in121

advance of or during winter weather can all cause one lane of the roadway to have relatively higher122

or lower TR.123

In addition to the above variability and uncertainty, there is also the potential for the RWIS sen-124

sors to provide inaccurate measurements of TR. Quality-control tests of the various in-pavement125

sensors used by the RWIS network in Ohio show a mean absolute error of 1◦C compared to base-126

line tests (Scott et al. 2005). Field tests conducted by Scott et al. (2005) show that sensor accuracy127
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can be greatly impacted for different daily thermal cycles. Road temperature measurements from128

infrared (IR) thermometry and surface-mounted sensors can differ significantly, especially during129

snowy and icy road conditions (Jonsson and Riehm 2012). Since the installation and maintenance130

of RWIS sites is at the discretion of state DOTs, it is possible that varying degrees of accuracy can131

be exhibited from one state to another, especially if the sensors are provided by different manu-132

facturers. The sensor readings are also affected by the work crew that installed them, which can133

differ even within the same DOT.134

So while it is optimal to use only the best observations, it’s important to realize that there is135

uncertainty in the RWIS temperature observations. Differences in the amount of shading by sur-136

rounding vegetation/buildings, road composition, and traffic counts can all cause TR to change137

rapidly in short distances. None of these forcings can be reliably parameterized within an NWP138

model and, while they may be reasonably captured within physical road models that provide a139

single-site deterministic forecast, the site-to-site and intersite variability suggests that the applica-140

tion of deterministic road models to the entire CONUS may not be trustworthy. Hence, a proba-141

bilistic approach may be more appropriate.142

3. Data and Methods143

All of the above factors provide good justification for stepping away from deterministic ap-144

proaches, and instead, viewing TR in a probabilistic frame of reference. The scientific objective of145

this study is to produce a gridded, reliable analysis/forecast of the probability that TR is subfreez-146

ing (TRprob). This is possible with machine learning (ML). A random forest (RF; Breiman 2001)147

ML model serves as the foundation for the algorithm. RFs have been shown to be successful148

in several different meteorological disciplines (e.g., Gagne et al. 2014; Elmore and Grams 2016;149
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Ahijevych et al. 2016; McGovern et al. 2017; Herman and Schumacher 2018), but to the best of150

our knowledge, have not been used for this purpose.151

a. Random forest algorithm152

RFs are most simply described as an ensemble of decision trees. Decision trees (Quinlan 1986,153

1993), in turn, can be thought of as a mapping of possible outcomes to a series of yes-or-no154

questions. Individual decision trees on their own are prone to overfitting and high variance, and155

subsequently do not generalize well to new unseen data. RFs alleviate this issue by performing156

bootstrap aggregation, also called bagging. Only a certain number of features and training exam-157

ples are used to train each individual tree. By doing this, the variance of a single tree collapses158

while only suffering a small increase in bias. One can use the mean from the forest for a deter-159

ministic solution, but by preserving the solutions from individual trees, a probabilistic value can160

be computed.161

b. Algorithm inputs162

The algorithm ingests 15 near-surface variables from the High Resolution Rapid Refresh163

(HRRR; Weygandt et al. 2009) and an additional 15 derived and static variables. Table 1 lists164

short descriptions for the features used in this study. These variables have been demonstrated to be165

important for dictating the road temperature in previous research (e.g., Crevier and Delage 2001).166

For the purposes of training, the 02-hr forecast is used because the latency in obtaining the data167

in real time(∼1 hr) allows for a 1-hr nowcast. For clarity, a 1200 UTC TRprob nowcast released168

at 1100 UTC is determined using the 1000 UTC 02-hr HRRR forecast. The TRprob nowcast is the169

primary focus of this study. However, it will be shown that these methods can be applied to longer170

lead times and thus the algorithm can be used prognostically (see section 5b). Since this study171
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is concerned with determining whether a road surface is subfreezing or not, only the cool season172

months, specifically 01 Oct - 31 Mar, are examined.173

c. RWIS observations174

The observed TR from select RWIS sites (red dots in Fig. 1a) are used as the required target175

variable, which is needed for training the RF. These sites are used to give a representative sample176

of the various weather and climate regions within the CONUS. Some of the remaining RWIS sites177

(grey dots in Fig. 1) are used for case-study analyses. Only observations of TR within 15 minutes178

prior to the top of the hour are considered in order to best match with the HRRR model outputs.179

A nearest-neighbor technique is used to pair each TR observation to its corresponding HRRR grid180

point. Each RWIS TR observation is binary encoded as 0 (1) to indicate TR is greater than (less181

than or equal to) 0◦C.182

The complete dataset spans two cool seasons: 01 Oct 2016 to 31 Mar 2017 and 01 Oct 2017 to183

31 Mar 2018 with a total of 8,616,744 1-hr observations collected. Because some of the RWIS184

observations are missing or are of insufficient quality, they are quality controlled as follows. First,185

all times across all sites with missing TR observations are discarded from the dataset. Second,186

instances where the change in TR exceeds 30◦C hr−1 or where the change in TR exceeds 50◦C187

day−1 are also removed as they are most likely errant. Third, if the maximum and minimum TR188

differed by less than 1◦C day−1, those days are also removed as even on overcast days, TR should189

vary by more than this, according to manual analyses of typical TR ranges on cloudy days. Lastly,190

given the uncertainties in TR observations, RWIS sites reporting multiple TR observations must all191

be either above or below freezing to be used in training.192

After data preprocessing, the total number of TR observations over the two-year period is193

5,994,591 of which ∼27% of the samples are subfreezing. The distribution of the quality-194
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controlled TR observations over the two seasons (Fig. 2) reveals that the highest number of sub-195

freezing observations belongs to the months of December and January. While October has the196

fewest number of total subfreezing TR observations at 21,173 (∼2% of the entire month’s distribu-197

tion), all but two months suffer from class imbalance (i.e., one target response is more frequently198

observed than the other). Class imbalance can cause ML algorithms not to learn as effectively199

because the model will be biased to predict the most frequent class (Batista et al. 2004). The200

problem of class imbalance is addressed through the use of class weights such that the weights are201

inversely proportional to class frequencies (i.e., incorrect predictions of the minority class are pe-202

nalized more heavily), along with restricting the training set only to include examples where TR is203

between−5 and 5◦C. This reduces the training set size in the 2016−17 winter season to 1,098,029204

observations. Performing this additional step does help alleviate some of the class imbalance is-205

sue as now 43.7% of the total training samples have subfreezing TR, but there is the caveat of206

not including potentially useful information from the neglected data. For the testing/validation set207

(2017−18 winter season), no subsampling is performed.208

d. Dataset splitting and experiment design209

Figure 3 provides an illustration of the experiment design. The overall dataset is split into tun-210

ing/training, testing, and probability-calibration datasets. The 2016−17 season is used for training211

and tuning the hyperparameters of the RF model. The most important hyperparameters to tune in-212

clude the depth of each decision tree (MaxD), the minimum number of samples required to be at a213

leaf node (Minsl), the minimum number of samples needed to make a split (Minss), the maximum214

number of features to be used for splitting (Max f eat), weighting of the class labels (Classw), and215

the total number of trees in the forest (Nest). In total, 50 iterations of K=6−fold cross validation216

are performed over a predefined hyperparameter space (see Table 2 for range of values) to identify217
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the optimal parameters for the RF. Here, K=6 because cross validation is performed over each218

month of the winter season. This cross validation approach is more appropriate then randomly219

sampling points within the domain since time series data are typically autocorrelated and, there-220

fore, one observation is not completely independent from previous timesteps. The area under the221

receiver operating characteristics (ROC; Metz 1978) curve (AUC) is chosen as the performance222

metric since it is insensitive to the class label distribution. The set of hyperparameters with the223

highest AUC averaged over all the 6 folds is used to construct the optimal base RF model (see224

bold values in Table 2). The 1,098,029 observations from the 2016−17 winter year are then used225

to train the base RF model using the best hyperparameter values.226

Probability calibration and testing are performed using data from the 2017−18 winter season.227

Typically, the raw probabilities from ML models are not well-calibrated (Niculescu-Mizil and228

Caruana 2012). Isotonic regression (Niculescu-Mizil and Caruana 2012) is used for calibrating229

the probabilities from the base model. For every two weeks of calibration data, there is one230

week of testing data. A 72−hour (3−day) gap between the end of a two-week calibration block231

and the beginning of the one-week testing block is enforced to minimize data leakage from the232

calibration set into the test set. The 72−hour gap was chosen based on manual examination of TR233

partial autocorrelation function plots from various RWIS sites, and the 72nd lag corresponds to a234

correlation of zero (not shown). The exact splits of calibration and testing weeks are provided in235

Table 3. While the calibration and testing data are split from the same winter season, it is important236

to realize that those data are completely independent of the training set.237

The final calibrated probabilities are produced in the following steps.238

1. Produce uncalibrated probabilities for both calibration and testing sets using the base RF239

model.240
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2. Train the calibration model (i.e, the isotonic regression model) using the 18 weeks of uncali-241

brated probabilities.242

3. Calibrate the test set probabilities by passing the uncalibrated probabilities associated with243

the testing set through the calibration model (generated from step 2).244

4. Output from the TRprob algorithm245

In this section, three case studies are presented that highlight model performance for various246

regions within the CONUS and compare the output to available observations. Also examined are247

the features from the random forest considered most important in influencing TR.248

a. 04 February 2018: Multi-car pile-up in Missouri249

A winter storm brought snow and ice to central Missouri on 4 February 2018 that resulted in250

over 130 roadway incidents on Interstate 44. One of these is a 12 car pile-up, which resulted in251

one fatality east of Lebanon, Missouri. This accident occurred near 2300 UTC that day.252

Observations from the nearest Automated Surface Observing Station (ASOS) site in Lebanon,253

Missouri (KLBO; indicated in Fig. 4d) show generally-decreasing two-meter temperature (T2m)254

leading up to the event (Fig. 4a). T2m first becomes subfreezing around 1500 UTC. Also shown255

on Fig. 4a is the observed TR from the MO009 RWIS site. TR generally follows T2m until sunrise,256

after which TR increases to ∼5◦C. Rapid cooling of TR begins at 1800 UTC. At 1900 UTC, snow257

is reported at KLBO and continues until 0000 UTC the next day. The HRRR T2m agrees well with258

the observed T2m, showing a gradual decrease throughout the day (Fig. 4b). Like the observed259

TR, the HRRR surface temperature (Ts f c), experiences a temporary increase after sunrise and then260

decreases after 1800 UTC. The HRRR solar radiation (S) is also included in Fig. 4b. It shows a261
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gradual increase between 1300 and 1800 UTC, followed by intermittent increasing and decreasing262

values associated with changes in cloud cover (not shown).263

A time series of TRprob at the location of the accident shows reasonable correspondence to the264

HRRR input variables (Fig. 4c). Namely, probabilities increase as temperatures decrease or as265

cloud cover increases. Plan views of the TRprob valid at 2000 and 2300 UTC show generally266

increasing probabilities over Missouri resulting in TRprob ranging from 95-100% over most of267

the state by 2300 UTC (Figs. 4d,e). The observed TR (overlaid in Figs. 4d,e) shows reasonable268

agreement with the algorithm output — areas with elevated probabilities have subfreezing TR and269

areas with low-zero probabilities have mostly above-freezing TR.270

b. 02 April 2018: Snow in complex terrain271

The second example occurs in early spring in Washington state. During the overnight to early272

morning hours of 1-2 April 2018, snowfall in the Cascade mountain range forced the closure of273

I-90, a major artery transecting the Cascade Mountains and into the Seattle metropolitan area.274

The observed T2m is below freezing for much of the period at the KSMP ASOS site (Fig. 5a;275

for location of ASOS and RWIS sites, see Fig. 5d). The observed TR from the nearest RWIS site276

(TFRAN) was slightly above freezing in the early evening hours before becoming subfreezing277

overnight. The TFRAN site is located near Snoqualmie Pass for which Washington State Depart-278

ment of Transportation camera verification shows snow on the roadway during the overnight hours279

(not shown). Similar to the Missouri case, solar insolation causes TR to increase dramatically after280

1700 UTC (Fig. 5b). The HRRR T2m has a slight warm bias relative to the observed temperature,281

but otherwise, shows a similar trend (Fig. 5b). HRRR Ts f c increases in response to strong in-282

creases in insolation starting near 1400 UTC. However, between 1400 and 1700 UTC, TR remains283
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fairly constant despite nonzero solar radiation flux, thus it may be likely that during this time, the284

insolation was melting the accumulated snow.285

The TRprob time series shows the same anticorrelation with TR as the Missouri event (Fig. 5c).286

Plan views of TRprob are displayed for 0900 UTC and 1200 UTC 2 April 2018, both of which287

fall within the time window for when the portion of I-90 was closed (Fig. 5d,e). All RWIS sites288

that traversed through the Cascades along I-90 report subfreezing temperatures at these times.289

The TRprob-algorithm output compares well with observations, having probabilities that, at times,290

exceed well past 80%, indicating that subfreezing roads and, hence, accumulating snow, are likely291

if the roadway has not been previously treated.292

c. 03-04 March 2019: Transition season case293

The last example represents a transition season event in Maryland. On 3-4 March 2019, a win-294

tery mix was anticipated for much of the state and nearby neighboring areas. Varying amounts of295

snowfall, with tight snowfall gradients, were forecast across the region.296

The observed T2m from the Gaithersburg, Maryland ASOS and observed TR from RWIS site297

MD056 is provided in Fig. 6a. TR and T2m reach their maximum value between 1500 and 1800298

UTC and begin falling soon after once the initial precipitation began falling at 1700 UTC. For299

much of the event, observed T2m is between 0 and 5◦C. Snow begins to fall near 1800 UTC lasting300

until 2100 UTC after which a mix of winter precipitation was reported. HRRR model fields show301

an increase in Ts f c and T2m from 1200 UTC to 1600 UTC coincident with an increase in incoming302

solar radiation (Fig. 6b). As cloud cover increases, incoming radiation decreases as do the other303

HRRR model temperature fields and the observed TR and T2m. The TRprob time series accordingly304

shows very low values for much of the event, only peaking at 50% by the end of the forecast305

period, coincident with the HRRR temperature fields dipping below 0◦C (Fig. 6c).306
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Plan views of the TRprob output are provided at 2100 3 March 2019 UTC and 0600 UTC 4307

March 2019 (Fig. 6d,e). At 2100 UTC, TRprob is low across much of the region with the exception308

of extreme northwest Maryland. A handful of RWIS sites report subfreezing roads with TRprob309

ranging from 40−80% in that area. As the precipitation moves out of the region at 0600 UTC,310

TRprob remains low over the interior portions of Maryland (i.e., TRprob < 25%) and higher in regions311

of northwest Maryland in which a larger consensus of RWIS sites report subfreezing TR. Overall,312

TRprob performs well considering temperatures are close to freezing for much of the event.313

d. Feature importance314

From the preceding case-study analyses, it appears that some of the HRRR input features may be315

more important than others. For example, in Figs. 4b,c, local spikes in TRprob occur coincident with316

local spikes in insolation. The RF algorithm can provide information on which features are most317

important for the model to distinguish between class labels (i.e., subfreezing roadway versus not a318

subfreezing roadway). For this study, the rank of each predictor’s importance is determined using319

two variations of permutation importance, labeled as single-pass and multi-pass (see McGovern320

et al. 2019). For each feature within the testing dataset, all instances are permuted, the model is321

scored with the new values, and then compared to the baseline score to quantify the reduction in322

skill (single-pass; Breiman 2001). The second method is similar, but aims to alleviate the potential323

issue of strongly correlated/redundant predictors (multi-pass; Lakshmanan et al. 2015). For the324

multi-pass method, once a feature is identified as important, its values stay permuted and the325

procedure outlined above is repeated until all features have been examined. Here, the skill score326

metrics used to assess importance are the Brier Skill Score (BSS) and AUC.327

Figure 7 displays the top 10 most important predictors for both skill score metrics and both328

permutation approaches. Starting with the single-pass results, most of the temperature-based fields329
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are among the top ten most important features, as are some radiation features, such as the incoming330

solar radiation and the upward longwave radiation flux. However, the reduction in skill does not331

differ considerably from the original score for most of these features. It is possible that information332

in one feature may be strongly correlated with other features, and thus any correlated feature on333

its own could be deemed unimportant. When examining the multi-pass results, the top four most334

important features are the same between skill metrics, which are the surface temperature, upward335

longwave radiation flux, T2m, and the number of hours Ts f c is subfreezing. The reduction in skill336

drops off dramatically if these predictors are removed such that the RF output is no better than a337

random forecast. These results are consistent with what one might intuitively expect as all of these338

top-most important features are obvious controls on TR.339

5. Statistical Analysis340

Probabilistic forecasts are typically evaluated using the ROC curve, the attributes diagram (Hsu341

and Murphy 1986), and the performance diagram. Statistical metrics associated with these dia-342

grams, such as the BSS and AUC, will be further discussed when appropriate. The focus here is on343

the nowcast prediction, but a forecasting perspective of the algorithm (using longer NWP model344

lead times), and sensitivity tests where the “freezing” threshold is modified will also be discussed.345

a. Nowcast Performance346

The ROC curve shows the probability of detection (POD) versus the probability of false detec-347

tion (POFD). Ideally, the ROC curve should be as close to the upper left hand corner of the figure348

as possible (i.e, high POD, low POFD). The AUC is a single metric typically used to assess model349

performance. An AUC > 0.9 is considered “excellent” whereas AUC <= 0.5 is considered no350
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better than a random forecast (Luna-Herrera et al. 2003; Muller et al. 2005; Mehdi and Ahmadi351

2011).352

From Fig. 8a, the average AUC for the seven-week test set is ∼0.96, which falls within the353

“excellent” range. Each of the testing week curves hug the upper-left corner of the diagram,354

which is desirable. The individual ROC curves do show subtle variability, with week one (18−25355

October) having the lowest individual AUC of 0.93 and the last testing period (29−31 March)356

having the highest individual AUC of 0.98. The higher AUC for the last testing period is attributed357

to the fact that there are many more true negatives (i.e., above freezing observations) relative to358

other weeks (and fewer observations), and thus the POFD is inherently smaller for this week.359

Even though the AUC for the first week is comparatively low, it still falls within the range of360

values considered to be “excellent”.361

The performance diagram shows POD versus success ratio (SR) with contours of frequency bias362

(FB) and critical success index (CSI) overlaid (Fig. 8b). SR and CSI can change significantly363

based on the distribution of class labels, which makes the performance diagram difficult to judge.364

Typically, maximum CSI should occur where the FB is close to 1 (Roebber 2009), and thus ideally,365

the curves should generally be in the upper right hand corner of the diagram. The performance366

diagram for the algorithm depicts maximum CSI of 0.69 at a FB of 1.04. The FB of 1.04 does367

indicate a subtle overforecasting bias, but this number is still close to zero and thus the algorithm368

is deemed to perform well. The week of 18−25 October is the only week that is far removed from369

the grouping in the upper right hand corner. There are fewer subfreezing TR observations for the370

month of October compared to other months (see Fig. 2) and, thus, its performance may not be as371

strong owing to fewer samples (i.e., the class imbalance problem). Further inspection reveals that372

October remains underrepresented in the training set as only 3.2% of all training examples arise373

in October, of which only 4,470 examples are subfreezing. Also, over 85% of the observations374
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during the month of October were within regions of complex terrain, which may not be completely375

resolved by the HRRR model.376

While the algorithm’s performance over the climatological distribution of TR is good, the reader377

may wish to know how well the algorithm performs for TR within a range close to 0◦C. Figures 8c,d378

show the ROC curves and performance diagram, respectively, of the algorithm for TR observations379

in the range of -5 to +5◦C. Generally speaking, the curves in each diagram do deviate from their380

“ideal” configurations, however the algorithm performs very well within this more confined TR381

range. The mean AUC is 0.91, which is still considered excellent, and thus, the algorithm is able382

to discriminate between classes effectively.383

The attributes diagram (Fig. 9a) shows the average forecast probabilities versus the conditional384

event frequency. The diagram features the reliability curve, a climatology line, the no-resolution385

line, the perfect-reliability line, and a no-skill line. If the reliability curve passes through the region386

bounded by the no-skill line and the climatological line (gray region in Fig. 9a), the classifier is387

deemed to have skill better than climatology. The BSS is typically used to compare the model388

Brier Score, which measures the accuracy of probabilistic forecasts (Wilks 2006), to a climatology389

forecast. For a model to be considered better than climatology, the BSS must be greater than zero.390

The reliability curves for all weeks follow the ideal reliability curve and are considered skillful391

for all of the probability bin ranges. The calibrated output probabilities for most weeks appear not392

to have any significant under or over forecasting biases. The only exception being that of the week393

of 14−21 November, which does have a slight underforecasting bias for all probabilities less than394

80%. The mean BSS for all weeks is 0.66 indicating the skill is better than climatology. Here,395

climatology is defined as the proportion of TR observations below freezing for each respective396

month that a test week falls within. The week of 18−25 October has the lowest BSS of 0.44397
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compared to the highest week of 03−10 February with a BSS of 0.75 which agrees with the398

conclusions from the performance diagram.399

Alongside the attributes diagram is a histogram of the forecast probabilities (Fig. 9b). The400

forecast probabilities from the the calibrated model are considered sharp with values maximized401

near 0 and 1 for low TRprob and high TRprob, respectively. TRprob in the mid-range (i.e., 30−70%)402

are less prominent.403

Overlaid on Fig. 9b are a few of the most important features from the RF as determined from404

the feature importance section. When atmospheric temperatures are below (above) −8◦C (5◦C),405

the RF is very likely to assign high (low) TRprob. However, when atmospheric temperatures are406

between 0◦C and −4◦C, the mid-range probabilities tend to be most prominent. This may be407

attributed to error within the NWP model and thus the less certain mid-range probabilities are more408

common. A study by Reeves et al. (2014) showed that uncertainty in the temperature forecasts409

from a NWP model (on the order of a few degrees Celsius) when predicting certain precipitation410

types can greatly impact the validity of the forecasts. While forecasting precipitation type is not411

the goal or within the scope of this paper, their results support these and indicate that subtle NWP412

model errors on the order of just a few degrees can substantially impact any type of forecast,413

including the prediction of TRprob.414

Also shown within Fig. 9b are the two derived features: the number of hours Ts f c and T2m are415

subfreezing. As the number of hours of subfreezing temperatures increases, it is more likely the416

model will produce higher TRprob. When Ts f c has experienced subfreezing temperatures for ∼20417

hours, TRprob is high, and almost certain at ∼50 hours. However, there are instances where the418

surface of the road can be forecast to be subfreezing only a handful of hours after Ts f c or T2m419

become subfreezing. These situations may arise when air temperatures have been near freezing420

(but not subfreezing) for extended periods of time.421
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Similar to Fig. 8, the attributes diagram and forecast probability distribution are shown for the422

TR range of -5 to +5◦C. The attributes diagram (Fig. 9c) is similar to that of Fig. 9a implying that423

the probabilities are still reliable and well-calibrated for this confined TR range. The climatology424

has increased, which is evident by comparing the vertical dashed line in Fig. 9a and Fig. 9c. This425

increase acts to decrease the BSS, in part, from 0.66 to 0.51. However, this BSS value is still426

skillful. The forecast probability distribution (Fig. 9d) shows similar results to that of (Fig. 9b) as427

the forecast probabilities are considered sharp with values maximized near 0 and 1 for low TRprob428

and high TRprob, respectively.429

Typically, a machine learning model is compared to a baseline model to see if the new model430

adds additional skill. One potential baseline model would be to use the top HRRR soil-temperature431

as a proxy for TR, similar to Downing et al. (2020). Using soil temperature as a proxy for road432

temperature gives a POD of 0.8, FAR of 0.4, FB of 1.33, and a CSI of 0.52 over the test set. This433

kind of statistical evaluation is not as straightforward with TRprob output, because the output is not434

binary. Thus, it would be inappropriate do a direct comparison to show relative skill of one method435

over the other. However, the statistics presented in Downing et al. (2020), as well as this rather436

high FAR and FB computed over the test set, provide sufficient justification for the added skill of437

this algorithm over the soil-temperature approach.438

b. Forecast Performance439

Herein, we transition from a nowcasting to forecasting perspective. The 18-hr HRRR, 36-hr440

North American Mesoscale Forecast System (NAM) and Global Forecast System (GFS) data are441

used to produce 18-hr and 36-hr TRprob forecasts. The 18-hr HRRR forecast is the longest lead442
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time available at hourly intervals for the HRRR model.1 The 36-hr NAM and GFS forecasts are443

chosen since state DOTs typically decide on a treatment plan for roadways 1-2 days in advance of444

a weather event. The 18-hr HRRR forecast data are evaluated using the previously discussed 1-hr445

nowcast algorithm. Because the NAM and GFS have different model variables, such as the number446

and depth of soil temperature layers, grid spacing, and biases compared to the HRRR model,447

individual RFs were trained for each NWP model, but using the same approach as was discussed448

in Section 3d. The variables included within each forecast model are chosen to maximize skill and449

are not meant to be identical to the nowcast algorithm.450

Results are positive as each forecast maintains an adequate amount of skill when compared with451

the 1-hr nowcast. Loss of skill compared to the nowcast is represented by a decrease in BSS of452

∼0.06 for the 18-hr HRRR forecast, and ∼0.09 for both the 36-hr GFS forecast and 36-hr NAM453

forecast. The probabilities are well calibrated and reliable as seen in the attributes diagram for the454

18-hr HRRR forecast (Fig. 10a). However, the GFS and NAM 36-hr probabilities are not as well455

calibrated (10b-c). The performance diagram (Fig. 11a-c) also highlights the loss of skill with the456

forecasts compared to the nowcast. Fewer training examples for the NAM and GFS, due to fewer457

model runs (i.e., 6 hourly runs compared to hourly for the HRRR), does impact the performance458

of the model and less than optimal performance is more noticeable in the months of October and459

March compared to the nowcast. The 18-hr HRRR forecast is superior to both NAM and GFS460

36-hr forecasts. The skillful forecasts are encouraging and could serve as a tool for forecasters461

when trying to assess short-range impacts on roads.462

1As of October. 2019, the 36-hr HRRR forecast is now the longest lead time. At the time of this study, not enough 36-hr data were available for

reliable ML.
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c. Sensitivity to the freezing threshold for the 1-hr nowcast463

There is motivation to modify the threshold used to differentiate a subfreezing road from a non-464

subfreezing road since public-works personnel may treat roadways in advance of expected winter465

storms. These treatments act to lower the freezing point of water. To examine this sensitivity and466

gauge the algorithm’s performance, two new RFs are trained using “freezing” thresholds of −3467

and−6◦C. All other aspects of these experiments are identical to the original nowcast (see Section468

3d), and the following results are only applied to the 1-hr nowcast.469

Perturbing the freezing threshold drastically changes the number of subfreezing road events,470

thus worsening the class imbalance problem. Overall occurrence of subfreezing roads drops from471

∼29% for the 0◦C threshold to less than 10% for the −6◦C threshold. The attributes diagrams472

for the two perturbed freezing thresholds reveal a less skillful nowcast compared to the baseline473

0◦C threshold (Fig. 12), although it is still better than climatology with the exception of the first474

week, which actually has negative skill for the −6◦C threshold. The mean BSS for the weeks475

are 0.60 and 0.40 for the −3◦C and −6◦C thresholds, respectively, compared to the mean BSS476

of 0.67 for the standard 0◦C threshold. The −6◦C threshold mean BSS is skewed by the poor477

performance of week 1. Neglecting this week results in a mean of BSS of 0.59. Again, these478

differences are believed to be attributed to class-imbalance problems, and also to the fact that such479

cold TR observations are not likely during October. Addressing the class imbalance issue using480

other resampling techniques may improve the algorithm, but this is left to future research.481

6. Summary and Discussion482

The goal of this study was to produce an algorithm to provide CONUS-wide probabilities that483

road temperatures are subfreezing that is both accurate and efficient. This was accomplished484

through use of machine learning (i.e., a random forest). The algorithm is trained on the 2016−17485
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winter year and verified using seven weeks of the 2017−18 winter season. Results indicate the486

algorithm outperforms climatology with a mean Brier Skill Score of 0.66, while the mean AUC487

score of ∼0.96 is considered excellent. The algorithm performs well over then entire climatolog-488

ical distribution of TR, and also for instances when TR is within a range close to freezing, defined489

herein as -5 to +5◦C. The algorithm does well during the winter months, but can struggle at times490

during the transition or “shoulder” months (i.e., months of October and March) of the cool season491

and possibly in regions of complex terrain. The histogram of forecast probabilities is desirable492

with a higher frequency of probabilities assigned in the low (0-10%) and high (90-100%) range493

compared to the intermediate probabilities. Probabilities assigned in the 40-60% range were shown494

to be associated with instances where the forecast Ts f c and T2m are within close proximity to 0◦C.495

This is to be expected given inherent NWP model uncertainty, consistent with previous studies.496

Class imbalance may be one of the root causes for decreases in skill during the months of497

October and March, and for the “freezing” threshold sensitivities. The other reason may be that498

the NWP model on which the algorithm is trained cannot fully resolve the complex terrain, leading499

to less reliable skill. Experiments with more sophisticated resampling techniques, such as creating500

synthetic minority training examples (SMOTE; Chawla et al. 2002), may improve the skill for501

transition months. It is also possible that more observations are needed to better calibrate the502

probabilities.503

From a forecasting perspective, using a random forest to model the probability that TR is sub-504

freezing provides adequate skill out to 36-hrs using various NWP model parameters as input. The505

forecasting algorithm could be used to provide emergency managers, state DOTs, and forecasters506

ample time to prepare for the most appropriate road treatment plan and/or messaging for a winter507

event. The output could also be useful for local law enforcement to help prevent or better respond508

to accidents. For different “freezing” thresholds, lower freezing thresholds coincide with reduced509

23

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-19-0159.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/doi/10.1175/W

AF-D
-19-0159.1/4902984/w

afd190159.pdf by N
O

AA C
entral Library user on 11 August 2020



skill. However, the algorithm’s skill still outperforms climatology. Lastly, it is demonstrated that510

the algorithm produces reliable and accurate predictions for various winter events in various ge-511

ographic regions as discussed in the three case-study analyses. These strong results suggest the512

algorithm can add value to the forecasting process.513

There are some considerations the reader may wonder about that are worthy of discussion be-514

fore closing. The first is that the algorithm does not account for precipitation. Less than 8% of all515

observations occur coincident with precipitation and early iterations of the algorithm that incor-516

porated precipitation show that it had negligible influence on the results. Therefore, this feature517

was removed to improve the algorithm’s computational efficiency. Nor does the algorithm account518

for the amount of traffic (or other anthropogenic effects), which can modulate TR, or any previous519

road treatment from state public works vehicles. Since this algorithm is targeted for implemen-520

tation within the National Weather Service (NWS), only those products that are available within521

NWS operations are included as inputs to this algorithm. But, this could be folded in as a feature522

in the future. Unlike METRo, or other physical road models, this algorithm currently does not523

provide information about hazards like accumulating snow or ice. Work is underway to connect524

this algorithm’s output to forecasts and analyses of hydrometeor phase and quantitative precip-525

itation amounts to create a road hazards product. Last, this algorithm has only been applied to526

deterministic model output so far. There are several approaches to applying machine learning to527

ensemble output (e.g., Gagne et al. 2014, 2017; Loken et al. 2019). The best approach for this528

application is a topic currently under investigation.529
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TABLE 1. Input features to the RF algorithm.

Feature

Hours T2m <=0◦C

Incoming short wave radiation flux (S)

Hours Ts f c <= 0◦C

Surface temperature (Ts f c)

Visible beam downward solar flux (Vbd )

Hours T2m >0◦C

Upward long wave radiation flux (λ↑)

2-m air temperature (T2m)

Hours Ts f c > 0◦C

T2m and Ts f c difference (HRRRdT )

Absolute difference between current date and 10 Jan

Friction velocity at the surface (Vf ric)

S and λ↑ difference

2-m dewpoint temperature (Td )

Latent heat flux at the surface (Lh f )

Simulated brightness temperature (Tirbt )

S and λ↓ difference

Downward long wave radiation flux (λ↓)

G and Sh f difference

Ground flux (G)

Sensible heat flux at the surface (Sh f )

Surface roughness (SR)

10-m wind speed (U10m)

Visible diffuse downward solar flux (Vdd )

Total cloud cover percentage (Ctotal )

Low cloud cover percentage (Clow)

Mid cloud cover percentage (Cmid )

High cloud cover percentage (Chigh)

Urban (LU ) and rural (LR) HRRR land classification
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TABLE 2. Hyperparameter ranges used for model tuning. Bold values identify the optimal hyperparameter

values.

673

674

Parameter Range of values

Nest [100,150,300,400,500]

MaxD [6,8,10,15,20]

Max f eat [5,6,8,10]

Minss [4,5,8,10,15,20,25,50]

Minsl [4,5,8,10,15,20,25,50]

Classw [“balanced”; 0:0.25,1:3; 0:0.5,1:2.5; 0:0.75,1:3.5;0:1,1:5;0:1,1:10;0:1,1:5]
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TABLE 3. List of dates from the 2017-2018 winter season used for probability calibration and testing

Calibration Testing

01-15 Oct 2017 18-25 Oct 2017

28-11 Oct-Nov 2017 14-21 Nov 2017

24-08 Nov-Dec 2017 11-18 Dec 2017

21 Dec 2017 - 04 Jan 2018 07-14 Jan 2018

17-31 Jan 2018 03-10 Feb 2018

13-27 Jan-Feb 2018 02-09 Mar 2018

12-26 Feb-Mar 2018 29-31 Mar 2018
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forecast (i.e., greater than climatology). (b) Histogram of forecast probabilities. The height719

of each probability bin corresponds to the number of counts in each bin. Solid blue line720

represents the mean 2-m temperature (top left), surface temperature (top right), number of721

hours the 2-m temperature is subfreezing (bottom left), and number of hours the SFC tem-722
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of each variable. c) Similar to (a) except for -5 to +5◦C TR range only. d) Similar to (b)724

except for -5 to +5◦C TR range only. . . . . . . . . . . . . . . . . 45725

Fig. 10. As in figure 9a, except for each forecast model. (a) HRRR 18-hr forecast (b) NAM 36-hr726

forecast, and (c) GFS 36-hr forecast. . . . . . . . . . . . . . . . . 46727

Fig. 11. As in figure 8b, except for each forecast model. (a) HRRR 18-hr forecast (b) NAM 36-hr728

forecast, and (c) GFS 36-hr forecast. . . . . . . . . . . . . . . . . 47729

Fig. 12. As in figure 9a, except for (a) perturbed freezing threshold of -3◦C and (b) perturbed freezing730

threshold of -6◦C. . . . . . . . . . . . . . . . . . . . . . 48731
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a) RWIS sites across the CONUS

b) RWIS sites across northern Ohio c) Sensor comparison for OH112

FIG. 1. (a) Spatial distribution of RWIS locations across the CONUS along with the US Interstate system. All

grey or red circles indicate valid RWIS sites. Red circles indicate sites used in training/testing, but gray circles

could be used for case study analyses. (b) RWIS sites in northern Ohio at 1100 UTC 14 November 2018. Sites

are color coded according to their lowest TR. Roadways are indicated as blue for interstates and grey for city and

county roads. (c) Observed TR at the two sensors at OH112 (See Fig. 2 red arrow for location) on 14 November

2018.
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FIG. 2. Distribution of RWIS road temperature observations for each month of the cool season. Subfreezing

(above-freezing) TR observations are shown in orange (blue).
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2016-17 data 2017-18 data

Tune hyperparameters 
Using K=6 fold CV

Train on all data using 
best parameters

Base RF model

Make 2/1 week 
data split

Produce uncalibrated 
probabilities on
calibration set

Train calibration 
model

Produce uncalibrated 
probabilities on 

test set

Final 
probabilities

FIG. 3. Flow chart illustrating the methods of this study. The left side outlines methods for training data,

whereas the right side outlines the methods for testing and calibration.
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TRprob

Tsfc

T2m

HRRRS

T2m

TR
Time of accident

* ******
Lgt Mod/Hvy

c) TRprob time series

b) Simulated 02-hr forecast HRRR variables

a) ASOS and RWIS observations

d) 2000 UTC TRprob output e) 2300 UTC TRprob output

*

FIG. 4. Analysis from the 04 February 2018 Missouri multi-car pile up showing time series of (a) observed

T2m and precipitation type from the KLBO ASOS and TR from the MO009 RWIS sites (locations of these are

indicated in panel d), (b) the HRRR 02-hr forecast T2m, Ts f c, and insolation (HRRRs), (c) the TRprob output, and

(d,e) plan views of TRprob at 2000 and 2300 UTC, respectively. RWIS observations are overlaid in (d,e). Sites

indicated as black (white) have subfreezing (above-freezing) TR.
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Lgt Mod/Hvy

** **** ** ** ************

b) Simulated 02-hr forecast HRRR variables

c) TRprob time series

T2m

T2mHRRRS

Tsfc

TRprob

TR

d) 0900 UTC TRprob output e) 1200 UTC TRprob output

*
a) ASOS and RWIS 
observations Road closure

FIG. 5. Analysis from the 01-02 April 2018 Washington snow in complex terrain case-study showing time

series of (a) observed T2m and precipitation type from the KSMP ASOS and TR from the TFRAN RWIS sites

(locations of these are indicated in panel d), (b) the HRRR 02-hr forecast T2m, Ts f c, and insolation (HRRRs), (c)

the TRprob output, and (d,e) plan views of TRprob at 0900 and 1200 UTC, respectively. RWIS observations are

overlaid in (d,e). Sites indicated as black (white) have subfreezing (above-freezing) TR.
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a) ASOS and RWIS observations

b) Simulated 02-hr forecast HRRR variables

c) TRprob time series
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d) 2100 UTC TRprob output e) 0600 UTC TRprob output
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RA SN UP

FIG. 6. Analysis from the 03-04 March 2019 Maryland transition season case-study showing time series of

(a) observed T2m and precipitation type from the KGAI ASOS and TR from the MD056 RWIS sites (locations

of these are indicated in panel d), (b) the HRRR 02-hr forecast T2m, Ts f c, and insolation (HRRRs), (c) the TRprob

output, and (d,e) plan views of TRprob at 2100 and 0600 UTC, respectively. RWIS observations are overlaid in

(d,e). Sites indicated as black (white) have subfreezing (above-freezing) TR.
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Single-Pass Multi-Pass

FIG. 7. Feature importance plots determined by the two methods of permutation. The single-pass (multi-pass)

method is shown on the left (right) column, and the the BSS (AUC) skill metric is shown on the top (bottom)

row.
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a) ROC curves b) Performance diagram

c) ROC curves: -5 to +5°C TR 
d) Performance diagram: strict TR range

FIG. 8. a) Receiver operator characteristic (ROC) curve for each of the 7 testing weeks. Each color represents

a testing week as denoted in the inset of panel (a). The solid black line represents the mean of the entire testing

set. Dashed line represents the no-skill line. b) Performance diagram with each individual testing week shown

along with the overall mean. Contoured dashed lines represent the frequency bias, whereas the colored contours

represent the critical success index (CSI) values. c) Similar to (a) except for -5 to +5◦C TR range only. d) Similar

to (b) except for -5 to +5◦C TR range only.
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a) Attributes diagram b) Probability distribution

c) Attributes diagram: -5 to +5°C TR 
d) Probability distribution: strict TR range 

FIG. 9. (a) Attributes diagram for the testing set. The (1:1) diagonal dashed line represents the perfect

reliability curve, the vertical dashed line represents the climatology line, the horizontal dashed line is the no-

resolution line, and the second quasi-horizontal line that intersects with the perfect reliability line is the no-skill

line. The shaded region corresponds to a skillful forecast (i.e., greater than climatology). (b) Histogram of

forecast probabilities. The height of each probability bin corresponds to the number of counts in each bin. Solid

blue line represents the mean 2-m temperature (top left), surface temperature (top right), number of hours the

2-m temperature is subfreezing (bottom left), and number of hours the SFC temperature is subfreezing (bottom

right). Dashed lines correspond to 10th and 90th percentiles of each variable. c) Similar to (a) except for -5 to

+5◦C TR range only. d) Similar to (b) except for -5 to +5◦C TR range only.
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a) HRRR 18-hr b) NAM 36-hr

c) GFS36-hr

FIG. 10. As in figure 9a, except for each forecast model. (a) HRRR 18-hr forecast (b) NAM 36-hr forecast,

and (c) GFS 36-hr forecast.
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a) HRRR 18-hr b) NAM 36-hr

c) GFS36-hr

FIG. 11. As in figure 8b, except for each forecast model. (a) HRRR 18-hr forecast (b) NAM 36-hr forecast,

and (c) GFS 36-hr forecast.

777

778

48

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-19-0159.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/doi/10.1175/W

AF-D
-19-0159.1/4902984/w

afd190159.pdf by N
O

AA C
entral Library user on 11 August 2020



a) Freezing threshold of -3°C b) Freezing threshold of -6°C

FIG. 12. As in figure 9a, except for (a) perturbed freezing threshold of -3◦C and (b) perturbed freezing

threshold of -6◦C.
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